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Angular Momentum, Magnetic Moment, and g-Factor
in General Relativity
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The solutions to the Einstein-Maxwell equations for the case of a slowly rotating,
massive thin shell with arbitrary charge are investigated. The form of the metric
chosen here facilitates a more detailed analysis of the shell’s angular momentum,
magnetic moment, and g-factor than in earlier work. In addition to confirming
earlier results, it is found that, for a charge-to-mass ratio greater than unity there
is no upper or lower bound on the value g may take and that the magnetic
moment and net angular momentum of the shell may vanish or change sign
(relative to the sense of rotation).

1. INTRODUCTION

In an earlier paper (Briggs et al,, 1981) the Einstein-Maxwell equations
were solved for the case of a slowly rotating body with arbitrary charge.
The solution was then applied to an infinitesimally thin, rotating, charged
spherical shell, and the angular momentum and g-factor of the shell were
calculated.

For such a calculation, the stationary axially symmetric metric (Brill
and Cohen, 1966; Cohen and Brill, 1968) used to describe the space-time
is of the form

ds’=—A%>dr’+ B*> dr’+ C* do*+ E*(d¢ — Q) di)? (1.1)

where A, B, C, E, and Q are functions of r and 6. The angular velocity of
inertial frames, ), is measured relative to inertial frames of the asymptotl-
cally flat space-time at infinity.

In this paper we follow in part the outline of the previous work (Briggs
et al., 1981), but rather than writing the metric in isotropic form in equation
(1.1), we choose to use the standard Schwarzschild representation for a
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spherical mass and charge distribution (see Section 2). This has the advan-
tage of simplifying the calculation somewhat.

We obtain expressions for the g-factor, angular momentum, and mag-
netic moment as functions of the charge-to-mass and radius-to-mass ratios,
and comment on these. We also include several graphs to illustrate the
dependence of these quantities on intermediate as well as limiting values
of the charge-to-mass and radius-to-mass ratios.

2. EINSTEIN-MAXWELL EQUATIONS: FORMULATION AND
SOLUTION

The Einstein field equations are
8uTH = G*

where T*” and G*” are components of the stress-energy tensor and the
Einstein tensor, respectively. A suitable dual basis in which to perform the
calculation is w’=dt, w'=Bdr, w’>=Cdb, w*= E(d¢ —Q dt). The non-
trivial field equations [as stated in Briggs et al. (1981)] are

C B {CE BE
sern=oer|(5) +(2), 2 (F) e (%))
87 (BC) 8) \¢c), B ). c /.

(525) +(5ae)
+ +
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where the subscript r or 6 denotes partial differentiation.
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The mechanical contributions to the stress-energy tensor for a rigid
body that is observed to rotate slowly with angular velocity w about the z
axis is given (to first order in w and Q) by

P & @7 pn+t?)
. §t13 tll t12 t13 .
mech = 2 2 o - +higher order terms
&t " t
§( pm+ t33) t31 132 t33

where p,, is the mass density, ¢=(E/A)(w —{), and t*” is the mechanical
stress-energy tensor in a frame that is not rotating with respect to the
observer. We note that in such a frame *' =0 (i=1, 2, 3).

The electromagnetic contribution to the stress-energy tensor is’

8T = E*+ H?
87T = Zs}kejhk
87TY,=(E*+H»8" -2(e'e’ + h'h)
The electric and magnetic fields are
E=¢'w,+e’w,te’w,
H=h'o,+h’w,+hw,

The dual representation of Maxwell’s equations gives the following
expressions (correct to first order in w and Q):

(ACe,), —(ABe,), — BCE[’%:(%) + hl(%)] 0
(AEe;), =0
(AEe;)y =0

(BEhy)s+(CEhy),=0

and

(ACh,), —(ABh,), + BCE[ez(%?> + e1<9—'>] = 4p,£ABC

B
(AEh3)r =0
(AEh;)g=0

(CEe,),+(BEe,), = 47p,BCE
where p, is the local charge density.

*For a definition of the symmetric electromagnetic stress-energy tensor see, for example,
Jackson (1975).
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We now find an exterior solution to the Einstein-Maxwell equations
using the metric in standard Schwarzschild form:
ds’=—A”dt*+ B* dr*+r* do*+ r*sin® 6 (dp —Q dt)?

where A and B are functions only of r. The electric and magnetic fields
may be written as

E=ew,, H=ncos Qo+ psin d w,

where e, p, and n are functions only of r. Neglecting terms quadratic in the
angular velocity and noting that H is linear in the angular velocity, the
nontrivial field equations are those involving T, T, T" and T? (or

equivalently T°%). They are
e’ 1
87Tr2<pm+g)=|:r(l'—ﬁ>]r (2.1)

A (r'Q
+ _ + 3Ny =— ( r) 2.2
2Aep+87(w —Q)(p, +17)r 2B\ AB ), (22)
eZ
A232[1+8m2<t“———ﬂ = (rA?), (23)
8w
2
5, € (rA)r} A
b ) = [ 2] 2.4
S”AB(t 87r> l:rB B (2.4)

The only nontrivial Maxwell equations are the fourth, fifth, and eighth.
They are

1
p= —EE(rzn)r (2.5)
(Arp), + ABn+r°eQ, =4mp,r’B(o — Q) (2.6)
(r’e), =4mp Br’ (2.7)

For the remainder of this section we shall consider the region exterior
to the charge and mass distributions. In this region p,, = p, = ** =0. A first
integral of equation (2.7) is

e(r)y=q/r* (2.8)

where g is a constant to be determined. With this expression for e(r),
equation (2.1) reduces to B>=(1-k/r+4°/r*)"!, where k is a constant to
be determined. After some manipulation equation (2.3) yields A’=
k,(1—k/r+q*/r*), where k, is a constant to be determined. Since the space
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is asymptotically flat at infinity, we choose A>~1 as r->co. This requires
k,=1. For large r, we thus have A°~1—k/r+ O(r?). This must match
onto the weak field solution, which has A>=1—2m/r. This requires k = 2m.
Hence,

B*=A"? (2.9)

in the region exterior to the charge and mass distributions. We may now
proceed to solve (}(r) and n(r). Substituting equation (2.5) into (2.2) we

obtain
1/r*Q
2y 1 r
q(nr), 2<AB>,

A first integral is
1 2
Q,=F(2an - 10) (2.10)

where 7, is a constant to be determined, and we have chosen AB=+1.
Using equations (2.10) and (2.5) to eliminate p and Q, in equation (2.6),
we obtain

1{A 24*
—E[E(rzn),] +n(1+7> =-rq—41’0 (211)

or, substituting for A and B,

3 2 2
—r%—n—n'(2r—3m+gr—>—én"(rz—Zmr+q2)=r%-no (2.12)

The particular solution may be found by power series. This method
also yields one linearly independent solution of the homogeneous equation.
To find the second linearly independent solution of the homogeneous
equation, one may write it as the product of the first solution with an (as
yet) undetermined function f and then use equation (2.12) to obtain a
first-order differential equation for f, which may be solved by the method
of partial fractions. Further details may be found in the Appendix of Briggs
et al. (1981).

We give here the general solution for || # m, which has essentially the
same structure as the solution that arises when the isotropic form of the
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metric is used. For |g|# m the general solution of equation (2.12) is

3 2
n(r)=d (1—35 T2 ) + nz[“f’" S22
BYe m’ r—m(1+b)]
b(l 3{ +2§ ) ————_r—m(l—b) (2.13)
where {=|q|/m and b=(1-¢>)"". Note that for |g|>m,
o m(1+b) o 2|bl(r/m—1)
bty O B 1

since the argument of the logarithm is of the form z/Z and thus the modulus
of the argument is unity. Integration of equation (2.10) using (2.12) yields
Q. For |q|# m

Q(r) = Qo+—<l gz’") 2—qr’ﬂ(1 £ +g4ﬂ)

2 2 -
—2qm| 272
_1 (2 m m M]
2mb( r -2 ERER _1) lrlr—m(l*b) (2.14)

3. BOUNDARY CONDITIONS

The case of a massive, charged, slowly rotating shell of radius r, is
considered. The shell rotates rigidly about the z axis with angular velocity
. Let the mass and charge distributions be specified by

pmzKB(r_rO): peZU‘S(r—rﬂ)

where 1={8(r—ry) d*r. Since e must be regular at the origin, equation
(2.7) requires e =0 for r <r,. Integration of equation (2.7) across the shell
yields

q=J od(r—r)e' rwirew’

This identifies g as the total charge.

The left-hand side of equation (2.4) contains terms proportional to
0(r—ry) (€*/8a term) and 8(r—ry) (£° term), where 9 is the Heaviside
function and 6 is the Dirac delta function. One therefore concludes that A
is continuous at r=r,. Since t'' is zero both inside and outside the shell,
equation (2.3) implies that t'' = 0 everywhere. Regularity of A and B at the
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origin requires A and B to be constant in the interior, r <r,. Equation (2.3)
yields B=1 for r<r,. Thus

2

2
B=1, A2=A(2,El——m+gz— for r<r, (3.1)
L

Integration of equétion (2.1) across r=r, yields
K=m=—q*/2r,

Multiplying both sides of equation (2.1) by B and integrating across r = r,
we obtain

+
8mrik J Bé&(r—ry) dr=-2r,(Ay,—1)

Note, however, that, in general, the integral of the product of a discontinuous
function and a 8-function at the discontinuity is not defined.” Let 1 = > =
S8(r—r,); if we integrate (2.4) across r=r, and use the above results, we

obtain
1 qz]
a2 1—Ay)——
4A0[m( o) To
Thus,
2 2
g 1 q
=m~——, S=——|m1-4)-+
R 4A0[m( o rJ
and
=0, 12 =12 =88(r—r,) (3.2)
Solving equations (2.2), (2.5), and (2.6), we find
Q=0Q,+Q,/7°

n=ny+n/r
p=—(r’n),/2r for r<r,

Since n and () are regular at the origin, O =, n = ny, and p = —n,. Outside
the shell, €} is required to vanish at infinity, since () is measured relative
to observers in inertial frames of the asymptotically flat space-time at infinity.
Further, the magnetic fields, since they are physical, must vanish at infinity.
These conditions determine 7, in terms of %,, We find that

n(r) = ’;‘;;’3+ mR(r) (3.3)

3

“The value of Io_ow 68 dr is undetermined without further information, but lies between 0 and
1, see, for example, the paper by Cohen and Cohen (1971).
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where
2 3
R(r)=—%m—3(1—;2)-2[—”—1+%—3/:2(1+z§2)—”%
r r° 3 r
1 m? m*\ . r—m(1+b)
+—(1-325+204~5 | In————7
2b( 3¢ r ¢ r3) nr—m(l—b):l
and
1 —4
R(r):-r;+0(r ) as r—oo
Also
7 m
Q(r =3—;<1—£2;>+2qn10(r) (3.4)
where
_ L1 m 2 \m? 1 m?
(P =—3m3(1—¢y2|=_M_= L8\ L e U
Q\r) Sm (1 {) [r 7‘2 3<1 2)7‘3 3£(1+2§)r4
1 (2m _ m* ,m' ) r——m(1+b):]
—_— — —+ —— —_—
2mb<r 2 r ¢ r* 1 lnr—m(l—b)
and
1 -5
Q(r)=—m+0(r ) as r->o

Observe that these solutions have the same structure as those quoted in
Briggs et al. (1981).

If we assume that p is (at worst) discontinuous at r = r,, then equations
(2.2), (2.5), and (2.6) imply that Q) and n are continuous across the shell:

No 2m
Qo=—=|1-"—])+2 35
0 3'%( §2r0> am Qo (3.5)
and
Ry = 3770q3 + T]lRO (36)
mry

where the subscript indicates that the functions are to be evaluated at r = r,.
Integrating equation (2.2) across r=r, gives
AO - l

A()K

4
Q|I=—(0-Q)(k +5)
Iy
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Integrating equation (2.6) across r = ry [using equation (2.5)] gives
A +
[‘E(rzn)r:l =—2q(» — )

Expanding the above equations, we obtain

no<2§ m

3r —1>+2q77100"4(A0Kr0) l(w Qo)(k +S8)(A—1)

or

770(2§rm 1) 2121771Ro=4(A0K70)71(¢0"Qo)(K+S)(A0—1) (3.7

[since Q'(r)=r"R(r)], and

770q 0
3mr}

——(Apt2) + oAl Ao(roRo+ 2R} —2Ry] = —2q(w — Q) (3.8)
where R is the derivative of R with respect to r, evaluated at r,. We find
7 =Aqno/6m (3.9)
where (after some manipulation)
A=2r"[(re— m)+ Ag(2ro—3m¢?)]
X {Ro[(ro— m¢*)(3A5—1) —2r,A,]
+ roRO AL Gro— mEH) Ag+3(ro—m{H 1} ! (3.10)

and equations (3.7) and (3.8) have been used with (3.1) and (3.2). Before
obtaining an expression for the g-factor of the shell, we must first establish
a connection between the total angular momentum of the shell J and known
constants. (This will also be used in the following section to obtain an
explicit representation for J.) The angular momentum is given by’

J=J ET®w' A0’ r 0 (3.11)
tconstant

with
B =(E/A)0—-Q) pn+ )+ (1/47)ep sin 0

For a derivation of Eq. (3.11) see Cohen (1968).
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Substituting for E, e, and p [using equations (2.8) and (2.5) for the latter
two], we find

J=2x Jw sin® 6 d@ [Jw (Br*/A)(w—Q)(k+S) 8(r—r,) dr

0

lee)

(rzn),dr]

=3[(2r3/ kAg) (@ = Qo)(k + S)(1 — Ag) + qrin]

—(q/87) f

fo

Eliminating the terms in n, and (w — ), using equations (3.6) and (3.7),
respectively, we find

J=n,/6 (3.12)
Hence, by equations (3.3) and (3.9),

J
n=q—3(2+A) as r->© (3.13)
mr

The magnetic dipole moment u is given by
n~2u/r* as r-o (3.14)
The g-factor is defined by (Panofsky and Phillips, 1962)
g=2u(qJ/m)"’ (3.15)
Hence we find

g=2+A (3.16)

4. ANGULAR MOMENTUM AND MAGNETIC MOMENT

In the previous section we obtained a general expression for the g-factor
for the case of a massive, charged, slowly rotating shell. The g-factor,
however, is not an observable quantity; it depends on the ratio .of two
physical observables: angular momentum and magnetic moment. In order
to complete our discussion of the shell, expressions for the angular momen-
tum J and the magnetic moment u should be found. In this section we
obtain such expressions.

We first proceed to eliminate €}, from equations (3.7) and (3.8) [using
equation (3.5)]. After some simplification, equations (3.7) and (3.8) may
be written

N7 Ci+ g0 Cr = 4w (k + S)ry 4.1)
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1.1 T
Magnetic Moment LL v
09 IRqDI‘}‘::;Tﬂm"“ with
H o7t
(/qurd)
05 -
03 :_—T - ==
0.1 !l 1 | 1 -
0 2 4 6 8 rp/m 10
1.l
1
Anguior Momentum J vs
Radiat Parameter with
10 +— 1g1/m=.001,
0.9 - l
{(/mwrd) |
0.8 '
07 | |
08 || Asymp'o‘u [J/(mr% (.u)]li?/S |
0 2 4 6 8 r/m IO
L T
Magnetic Momom/.l. vE
09 Radial Parameter with
1q1/m =.00I.
0.7 +
(7qwrd)
0.5 -
03 F Asymptote ['u/(wgw)]= /3
0 2 4 6 8 ro/m 10

Fig. 1. (a) The g-factor, (b) the angular momentum J in units mer3, and (c) the magnetic
moment g in units qwry, versus radial parameter r,/ m for lg|/m = 0.001.
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Fig. 2. (a) The g-factor, (b) the angular momentum J in units mwrZ, and (c) the magnetic
moment g in units gwry, versus radial parameter ry/m for |ql/m =0.5.
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Fig. 3. (a) The g-factor, (b) the angular momentum J in units mwr}, and (c) the magnetic
moment p in unit gwra, versus radial parameter ro/ m for |g|/m=09.
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g-factor g vs
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Fig. 4. (a) The g-factor, (b) the angular momentum J in units morg, and (c) the magnetic
moment u in units gors, versus radial parameter ro/m for |g|/ m =0.99.
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Fig. 5. (a) The g-factor versus radial parameter ry/m for lgl/m =1.01. Note that g diverges
at ro/m~0.65. (b) Angular momentum J in units mwr? versus radial parameter r,/m for
lgl/m=1.01. Note that J has a root at rof/ m~0.65. This almost coincides with the point at
which « has a root. (¢) Magnetic moment  in units gquwrZ versus radial parameter ry/m for
g/ m =1.01. Note that u has a root at ro/m ~0.65. This almost coincides with the point at

which J has a root.
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Fig. 6. (a) The g-factor versus radial parameter ro/m for |g|/m =1.1. Note that g diverges
at ry/m~0.7. (b) Angular momentum J in units mewr? versus radial parameter ro/m for
lg|/m = 1.1 Note that J has a root at ro/m ~0.7. (c) Magnetic moment 4 in units gwrs versus
radial parameter ro/m for |g|/m = 1.1. Note that p has a root at r,/m~0.7.
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Fig. 7. (a) The g-factor versus radial parameter r,/ m for |g|/m=2.0. Note that g diverges

at ro,/m~1.9. (b) Angular momentum J in units mery

2

versus radial parameter ro/m for

[ql/m =2.0. Note that J has a root at ro/ m~1.9. (c) Magnetic moment y in units gorg versus
radial parameter ry/m for |g{/m =2.0. Note that 4 has a root at ro/m ~ 1.5.
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Fig. 8. (a) The g-factor versus radial parameter ro/ m for |g|/m = 10. Note that g diverges at
ro/ m ~42. (b) Angular momentum J in units mwrj versus radial parameter ro/ m for |gl/ m = 10.
Note that J has a root at ro/m~42. (c) Magnetic moment g in units qwr? versus radial
parameter r,/ m for |q|/m = 10. Note that u has a root at ry/ m ~ 10,
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Fig. 9. (a) The g-factor versus radial parameter ry/m for ||/ m =1,000. Note that g diverges
at ro/m~4.2x10°. For |g|/m> 1 the graph is essentially the same shape as the above. (b)
Angular momentum J in units mwr} versus radial parameter ro/ m for |gl/ m =1,000. Note that
J has a root at ro/m ~4.2x 10°, (c) Magnetic moment g in units gwr2 versus radial parameter
ro/ m for |g|/m = 1,000. Note that « has a root at ro/ m ~10%, and u converges very rapidly
to its asymptotic value of qwr2/3.
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(10q/670) Cs— 1, C4=2qwr; (4.2)
where the constants C,, C,, C;, and C, are defined as follows:
G E%Q(HAO) (1 —3{%) +3—‘:;(1 —x)(k+8)
C,=8(r3Q0)(k + 8) — Ag(1+ Ao)(r3R,)

A (4.3)
Cssf(A0+2)+4(1—§2x)

Cy= Ao{Ao[("gR(’)) +2("<3)Ro)] - 2("3Ro)} - 16§2("ng)3€2

and x=m/2r,. Equations (4.1) and (4.2) can be solved simultancously to
determine 7n, and 7n,:

(K+S)C4ral+2{2x2C2
=2 z .
Mo = T Cat I 2 Cy Cs (4.4)
and
+8)Csry'—3C
'nl———z(uqu(K S) 3r0 3 1 (4.5)

°202C,Cx%+3C,C,

Given equation (4.4), equation (3.12) yields an explicit expression for J.
From equations (3.9), (3.13), and (3.14) we find

p=3Gm0q/ m+n,) (4.6)

Substituting for 7, and %, [using equations (4.4) and (4.5)] into equation
(4.6), one obtains an explicit expression for .

For given values of { =|q|/m, graphical plots of x and J as functions
of ro/m (Figures 1-9) illustrate that u and J are always positive (with
respect to the sense of w) for £ <1, but may be either positive or negative
for ¢ > 1. This will be further discussed in Section 6.

5. ASYMPTOTIC SOLUTIONS FOR |g|>m AND |g|< m

The expressions derived in the previous sections for u, J, and g are,
in general, complicated functions of g, m, r,, and w. These expressions do
simplify, however, in several limiting cases. In this section we compute the
asymptotic formulas for u, J, and g in these limits. Use will be made of
these results in the next section.
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51. lql>»m, ie, {>1

In addition, a further requirement—either (i) |g|« r, or (ii) ro« m—is
needed in order that the expressions simplify. [ The former case, with k =0,
is non-general relativistic and is the subject of a recent paper (Cohen and
Mustafa, 1986).]

(i) |ql/ro< 1, m/ry<1 (with x=0). For this case, equation (3.3)
approaches

n(r)—n—%-q— 331, r>r, (5.1)
m r

while equation (3.4) becomes

7o m qm
=lo(1-Zp2) 40 > 2
0= 20) -4 o, (52)

The boundary conditions at the shell, r = r, [equations (3.5)-(3.8)], become

330 £x) - "”31 (5.3)
Mo 9 T
=— 441 )
o 3r(3)m rg (5.4)
Torx—1)+ ‘”‘~——<w ~Q0)(k+5) (5.5)
rg "o
1( ¢
(’flo +3m)~2q(w—ﬂo) (5.6)

where (Aq—1)/ Aok ~ —1/ro has been used in equation (5.5). Using equation
(5.3) to eliminate Q, from equations (5.5) and (5.6), we find

M3 x — 1)+ (29/ ro)m, ~ —4wry(2x —3x°¢’) (5.7)
and
no(q/m)+3n1~2qwr§ (5.8)

where use has been made of (k + S)/r,~2x —3x°¢%, and higher order terms
in m/r, and q/r, have been neglected. Equations (5.7) and (5.8) may be
solved simultaneously to determine n, and 7,:

Mo =2mwry(2—3xL%) (5.9)
and

m= 3wqr0( fx 2) (5.10)
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Equations (3.12) and (5.9) yield

J=imwri(2 —3x¢%) (5.11)

while equations (4.6), (5.9), and (5.10) yield
o =3q0rg (5.12)
The g-factor is found from (3.15) [using equations (5.11) and (5.12)] to be
g=6/(6—5¢"x) (5.13)

where ¢ =|q|/m and x = m/(2r,). This result is in agreement with Cohen
and Mustafa (1986) and the corresponding asymptotic result of Briggs et
al. (1981).

(i) ro/ m<1, roflq|« 1 (the point particle limit). For this case we use
the formulas of Section 4 to obtain the asymptotic expressions for J, u, and
hence g. In this limit equations (4.3) become

&

U( lal_,, +3>+O(r )

1
6
377 _4_ lql_ 3) -3
( 4§ {)( 14 t)omrot

c3=2<2§+ﬁ— —9>+O(ro)
m gl

3w, 4\(_,lal ) .
Ci= <1+4§+£ )( 2r0 1+§ +O0(ry)+0(™) (5.14)

where use has been made of

37, 4\(1 3 o L
Ro= (”45 ;)(3 2mr3§2>+0("’)+0({ )

37T 4 _1_ 1 -1 -3
Qo= (1+4§+§>< 4r‘0‘+2mr3§2)+O(r°HO(Z )

A0=|l!_§+ O(ro)

ro
,_3m_|q| 1<q)2
+ l=———_ 2 _{2) +0
(k+8)rg 4r, 4ro 2\rg (ro)

Equations (4.4), (4.5) with (5.14) yield
o= —6mawri[{+ O0({ ™)1+ O(rg) (5.15)
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and
n1=2wqr(2,|:§—z47—r+ O(§_1)]+O(r3) (5.16)
From equations (3.12) and (5.15) we find (for {» 1)
J=—mwry{+ O(r3) (5.17)
while equations (4.6), (5.15), and (5.16) give (for { »1)
w=—(3m/4)wgre+ O(r3) (5.18)

We observe from equations (5.17) and (5.18) that .~ 0 and J >0 as ry~> 0.
The g-factor is found from equation (3.15) [using equations (5.17) and
(5.18)]. It should be noted, however, that (for { > 1)

lim g =37/2¢ (5.19)

rg->0

a small, but nonzero, limit.

5.2. |gl< m,ie., {«1

For this case, equation (3.3) reduces to
2

1 2
R(r)z_%m*3[m+ﬂz+—ln<]———rf)], ¥>ry (520)
roro 2 r

Note that qR(r) and ¢qQ(r) are O(¢). In writing down the boundary
conditions at the shell, r = r,, we shall neglect quadratic and higher order
terms in ¢ in order to obtain equations linear in {. Thus, equations (3.5)-(3.8)
become

1 1
"0=%7701<_3+“)\R0) (5.22)
Ay—1

Mo = _4"(3)(“’ —Qo)(x+S) .
AoK

(5.23)

1 1
%Aﬁnoi[-pﬂi)\(rm)i:m] —2Apron,= 2Q(W - Q) (5.24)
0

where 7, has been eliminated in favor of A using (3.9). Note [from (3.2)] that
k=m+O0(?)
and
S=(m/4A,)(1~ Ao)+ O(¢?) (5.25)
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Eliminating Q, from equations (5.21) and (5.23) and substituting for « and
S from (5.25), we find

N0 =3mory (1+3A0)

2
2A,+ 1 (5.26)

Equations (5.22) and (5.24) may be solved simultaneously to determine A,
using (5.23) to eliminate the term in (@ — ;). After some manipulation one
finds

B 4(1+2A,)
rg(]. + 3A0)(2ROA0 - 2R0+ r()R(I)Ao)

(5.27)

Alternatively, one could obtain equation (5.27) directly from the general
expression for A [equation (3.10)] in the limit {« 1.

As stated in Section 3, the g-factor is given by g=2+ A. Equations
(3.12) and (5.26) yield

1-A,
_= o+ .

Equations (3.15) and (3.16) yield the following expression for the magnetic
moment:

1434, 2
2A0+ 1 r8(2R0A0_2R0+ roRéAo)

1oafo
;L=§wqr0m(l Ao)[ ] (5.29)

5.3. Ap—>1: The Weak-Field Limit

If m/r,~0 and q/r,~0 with ¢ arbitrary but fixed, then Ay~ 1 and
space outside (as well as inside) the shell is flat. For this case one would
expect to recover the non-general relativistic expressions for the angular
momentum, magnetic moment, and g-factor of the shell. In this section we
verify that this is so. We proceed (as before) by using the formulas of
Section 4 to obtain expressions for u, J, and g in this limit. From equations
(4.3) we find

Ci~1+0(x)
C,~ -2+ 0(x) (5.30)
Ci~3/x+ O(x°)

C4~ _3+ O(x)
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where we have used (k +.5)/r,~ 2x+ O(x*) and the C; have been calculated
only to lowest order in x. Equations (4.4) and (4.5) yield

1o =4mwrg+ O(x) (5.31)
m = —3wqry+ O(x) (5.32)

From equations (3.12) and (5.31) we obtain
213 J=imor} (5.33)

while (4.6), (5.31), and (5.32) give
lim p = 3qwr} (5.34)

Ag~>1
From (3.15), (5.33), and (5.34) we find
lim g=1 (5.35)

Ap—>1

Using Newtonian mechanics, one finds by a simple calculation that
the moment of inertia of a rigid spherical shell of mass m and radius r,
about its axis of rotation is 2mr3/3 and hence the orbital angular momentum
of the shell about its axis of rotation is 2merg/3. The angular momentum
of the electromagnetic field and the angular momentum due to the stress
supporting the shell are, by comparision, O(g?/ mr,) smaller than the orbital
angular momentum, and are therefore negligible (since q/ry—>0 in this
limit). Thus, the total angular momentum of the shell about its axis of
rotation is 2mwr;/3, which is in agreement with (5.33), as one would expect.
Similarly, using classical electromagnetism in flat space, one finds that the
magnitude of the magnetic moment of such a shell is gwri/3, which is in
agreement with (5.34), again as one would expect. Given these results for
w and J, it follows that g =1, in agreement with (5.35).

5.4. {<1 and A,->0: The Horizon Radius
Equation (3.1) can be expressed in the form
Aj=1-4x+4.x* (5.36)
with x = m/2r, and { =|q|/m. For { <1 the rhs of equation (5.36) vanishes
when
1-7x=1/(4x) (5.37)

There are two positive values of x, both of which are roots of equation
(5.37); it will be shown in Section 6 that only the larger root is physically
permissible. For a fixed mass the shell radius approaches a minimum
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(horizon) value as A, approaches zero. We once again use the results of
Section 4 to obtain expressions for u, J,and g as A, 0. For A,« 1, equations
(4.3) reduce to

C,~31-x)(k+8)ry!
C,~8(r3Qo)(k +S)
C;~4(1-0%%)

Cs~ K —167x*(rgQo)

(5.38)

where K = AlrgR}. Note that K approaches a finite, but nonzero value as
Ao~ 0, while Qp—> o0 and (k + S)ry"' >0 as Ay~ 0. It follows from equations
(4.4) and (4.5) that

,lir—?o No = 6mwr) (5.39)
and
}\{,r—?o 7=0 (5.40)

where equation (5.37) has been used in (5.39). It follows from equations
(3.12) and (5.39) that

lim J = mwr} (5.41)

Ag—>0
and from equations (4.6), (5.39), and (5.40) that _
lim u = qor] (5.42)

Ag—>0

Equations (3.15), (5.41), and (5.42) then give
lim g=2 (5.43)

Ag—0

6. REMARKS
6.1. Restrictions on m/r,

Given a value of ¢ greater than unity, the minimum value of A? is
always positive. However, for <1 the requirement that A’ be positive
implies that either

Cm/r>{(1+b) Vr=r,
or

m/r<{*(1-b) Vr=r,
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The first possibility must be rejected, since it cannot hold for arbitrarily
large r. Hence,

m/r<{*1-b) Vr=r, (6.1)
In particular,
m/r<{(1-b), (<1 - (62)

Note that the horizon radius ry = m{?/(1—b) follows from (6.1). In this
paper we have not applied any further restrictions on m/r,, given ¢, other
than that stated above. In particular, it is of interest to look at solutions
for u, J, and g as functions of ¢ and ro/ m, without restrictions on the sign
of «, which is not observable. (It may be noted that « is positive for
m/ro<2(7%)

6.2. General Comments on g, p, and J

From the graphs of u and J it can be seen that these observables may
be either positive or negative (with respect to the sense of @) for {>1. In
particular, for certain values of { and ry/m (e.g., Fig. 6b: { =1.1, ro,/ m=0.7)
the shell may rotate and yet have no net angular momentum (J =0). This
situation arises when the (negative) angular momentum associated with the
stress supporting the shell exactly cancels the (positive) angular momentum
of the rigid-body rotation and the electromagnetic field. In such circum-
stances the g-factor diverges to infinity, since u does not in general vanish
at the same point as J.

It is of interest to note that for a given { (> 1) there are some values
of g for which there are two possible values of ro/m (e.g., Fig. 6a: {=1.1
and 1= g=2). In these cases one configuration has u and J both positive,
and the other has u and J both negative. However, since w and r, may not
be directly measurable (e.g., for a microscopic system), one cannot in general
distinguish between the two configurations by measurements of w and J.

6.3. Comments on Asymptotic Results

In Section 5 expressions for u, J, and g were found in four limiting
cases. Here we compare results for these cases.

For the two cases { » 1, |q|/r0<< 1, and m/r,« 1 [Section 5.1(i}] and
¢« 1 (Section 5.2) one observes that in the weak-field limit (x>0 and
Ay~ 1) the expressions for the angular momentum (5.11) and (5.28) and
those for the magnetic moment (5.12) and (5.29) reduce to the non-general
relativistic limit values of these quantities for arbitrary ¢, as calculated in
Section 5.3. Our results are thus consistent in the Newtonian limit.

For the point particle limit, ro/m~0, and ¢ >» 1 [Section 5.1(ii)] we
have already noted from equations (5.17) and (5.18) that both u and J
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vanish as r, approaches zero. Thus, such a particle has no external magnetic
field, magnetic moment, or angular momentum (both 7, and 7, vanish as
ro—>0). Its electric field is, however, still given by equation (2.8).

For { <1, the shell has an event horizon. As the shell approaches its
event horizon, r,= ry (Section 5.4), the ratio of the general relativistic to
the nonrelativistic expression for J increases by 50% over its value in the
weak-field limit, while the corresponding ratio for u increases by 200%
over its value in the weak-field limit. These results follow from a comparison
of equation (5.41) with (5.33) and equation (5.42) with (5.34).

6.4. g-Factor for Some Elementary Particles

Charged elementary particles found in nature have { > 1. It is of interest
to see what radii are predicted for the electron, proton, and muon by the
asymptotic solution for { » 1, given the measured g-factors of these particles.
[Results for the electron and proton were included in Briggs ef al (1981).]

For the electron (¢ =2.042x10*' in dimensionless units) a value of
g =2.00232 yields a shell radius of 2.346 x 10™** cm.

For the proton ({=1.112x10"%) a value of g=5.586 yields a shell
radius of 7.789x 107" cm.

For the muon (£ =9.874x10"®) a value of g=2.00234 yields a shell
radius of 1.134x 107" c¢m.

7. CONCLUSION

For a slowly rotating massive shell of charge-to-mass ratio { less than
unity, the g-factor has a value in the range g =1 (the weak-field limit) to
g =2 (r, approaches ry ), in agreement with previous results (Briggs et al,
1981; Cohen et al., 1973). From the asymptotic expressions for w and J
and from graphical plots of x and J, we find that the ratios of the general
relativistic expressions to the nonrelativistic expressions for these quantities
are maximized as the shell approaches its event horizon, i.e., A;~ 0.

For a charge-to-mass ratio greater than unity there is no event horizon
and also no upper or lower bound on the value g may take. This arises
because the net angular momentum of the shell may vanish for > 1, but
not for  <1. For £ » 1 (as it is for charged elementary particles) and positive
mass density (i.e., k =0), the g-factor lies in the range 1 =g =6.
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