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The solutions to the Einstein-Maxwell equations for the case of a slowly rotating, 
massive thin shell with arbitrary charge are investigated. The form of the metric 
chosen here facilitates a more detailed analysis of the shell's angular momentum, 
magnetic moment, and g-factor than in earlier work. In addition to confirming 
earlier results, it is found that, for a charge-to-mass ratio greater than unity there 
is no upper or lower bound on the value g may take and that the magnetic 
moment and net angular momentum of the shell may vanish or change sign 
(relative to the sense of rotation). 

1. I N T R O D U C T I O N  

In  an ear l ier  p a p e r  (Briggs et al., 1981) the  E i n s t e i n - M a x w e l l  equa t ions  
were so lved  for  the  case o f  a s lowly ro ta t ing  b o d y  with a rb i t ra ry  charge.  
The so lu t ion  was then  app l i ed  to an inf in i tes imal ly  thin,  ro ta t ing ,  cha rged  
spher ica l  shell ,  and  the angu la r  m o m e n t u m  and  g - fac to r  o f  the  shell  were  
ca lcula ted .  

F o r  such a ca lcu la t ion ,  the s ta t ionary  axia l ly  symmetr ic  metr ic  (Brill  
and  Cohen ,  1966; C o h e n  and  Brill, 1968) used  t o  descr ibe  the space- t ime  
is of  the form 

ds 2= - A  2 dt2 q - B 2 dr2+ C 2 dO2+ E Z ( d q ~ - I I  dt) 2 (1.1) 

where  A, B, C, E, and  ~ are funct ions  o f  r and  0. The  angu la r  veloci ty  o f  
iner t ia l  f rames,  f~, is m e a s u r e d  relat ive to iner t ia l  f rames of  the asympto t i -  
cal ly flat space- t ime at infinity. 

In  this  p a p e r  we fo l low in par t  the out l ine  o f  the prev ious  work  (Briggs 
et al., 1981), but  ra ther  than  wri t ing the metr ic  in i so t rop ic  form in equa t ion  
(1.1), we choose  to use the s t anda rd  Schwarzsch i ld  r ep resen ta t ion  for  a 
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spherical mass and charge distribution (see Section 2). This has the advan- 
tage of simplifying the calculation somewhat. 

We obtain expressions for the g-factor, angular momentum, and mag- 
netic moment as functions of the charge-to-mass and radius-to-mass ratios, 
and comment on these. We also include several graphs to illustrate the 
dependence of these quantities on intermediate as well as limiting values 
of the charge-to-mass and radius-to-mass ratios. 

2. EINSTEIN-MAXWELL EQUATIONS:  FORMULATION AND 
S O L U T I O N  

The Einstein field equations are 

8~rT ~ = G ~," 
where T ~ and G "~ are components of the stress-energy tensor and the 
Einstein tensor, respectively. A suitable dual basis in which to perform the 
calculation is to~ tol=Bdr, to 2= CdO, to3--E(dq~-D dt). The non- 
trivial field equations [as stated in Briggs et al. (1981)] are 

\2--~] \2AC/  
E 3 (BE3.o~]  1 2- -1  C ~-~r 

-8"n'T~ E ) [ ( ' - - ~ n )  r - [ - \ ~ ! O _ ]  

lr / A~\ AoC~-I ~F / E~\ _EoC~] E2f~f~o -87rT12=(AC) Lt )o J 2A2BC 

(Ef~r~ 2 (Ef~o~ 2 E~C~ ArE r CrA r 
8~T1' = \ eABI  - \ 2 - - ~ /  + c - b ~ +  A--b-~ + A ~  

+(CE)_, (~)  ~ " ,[Ao\ AoEo 
+(AC)- t ~ ) o §  A----C- ~ 

: (  E~'~O~2__( E"rX~ 2 EoBo aoBo aoEo 
8~rT22 \ 2 A C !  \2AB! + ~ + - A f f C q  AC2E 

+ ( A B ) - ' ( ~ ) +  (BE)- '(~)r-f  arEr AB2E 

8=T33=(ABC)-'[(C-~-~ -t-(BA~ 
, \ C /  r 

1 Bo +(BC)-(-~) [E~')'r'2 - [ E ~ ~  

where the subscript r or 0 denotes partial differentiation. 
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The mechanical contributions to the stress-energy tensor for a rigid 
body that is observed to rotate slowly with angular velocity to about the z 
axis is given (to first order in to and 12) by 

Pm ~ t31 ~ :t32 ~([m-t-t33)) 
= t l l  /12 t13 

\~( Pm q- t33) t31 t32 t33 

+higher  order terms 

and 

(ACh2)r-(ABh,)o + BCE[ e2(-Q~) + e~(-~) ] =4~p~ABC 

(AEh3) r =- 0 

(AEh3)o = 0 

( CEel)r + (BEe2) o = 47rpeBCE 
where pe is the local charge density. 

3For a definition of the symmetric electromagnetic stress-energy tensor see, for example, 
Jackson (1975). 

where Pm is the mass density, ~-~ (E/A)(w -12), and t "~ is the mechanical 
stress-energy tensor in a frame that is not rotating with respect to the 
observer. We note that in such a frame t ~ = 0  (i = 1, 2, 3). 

The electromagnetic contribution to the stress-energy tensor is 3 

oo H 2 8,-rrTem = E 2 +  

oi 8~Tem --- 2ejkeJh k 
q 87rTem = ( E 2 +  H2)~  ij - 2(eie j + h~h j) 

The electric and magnetic fields are 

E = eltol + e2to2+ e3to3 

H =  h l tol + h2to2 + h 3to3 

The dual representation of Maxwell 's equations gives the following 
expressions (correct to first order in w and 12): 

( AEe3) r = 0 

(AEe3) o = 0 

( BEh2)o + ( CEhOr = 0 
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We now find an exterior solution to the Einstein-Maxwell equations 
using the metric in standard Schwarzschild form: 

ds  2 = - A  2 d t  2 + B 2 dr  2 + r 2 dO 2 + r 2 sin 2 0 (dO - I t  d t )  2 

where A and B are functions only of r. The electric and magnetic fields 
may be written as 

E=ew~,  H = n cos  O w~ + p s in  O ~o2 

where e, p, and n are functions only of r. Neglecting terms quadratic in the 
angular velocity and noting that H is linear in the angular velocity, the 
nontrivial field equations are those involving T ~176 T ~ T 11, and T 22 (or 
equivalently T33). They are 

(2.1) 

___A {r4a   
2 A e p + 8 r  2 B r 3 \  A B  ] r (2.2) 

8 1 t A B  t33+ = (2.4) 
B r  2 

The only nontrivial Maxwell equations are the fourth, fifth, and eighth. 
They are 

1 
p = -z-z-_ (r2n)r  (2.5) 

z / J r  

( A r p ) r  + A B n  + r2e~r  = 4r  - I t )  (2.6) 

(r2e)r = 4"rrpeBr 2 (2.7) 

For the remainder of  this section we shall consider the region exterior 
to the charge and mass distributions. In this region pm= Pe = t ~ = 0. A first 
integral of  equation (2.7) is 

e ( r )  = q / r  2 (2.8) 

where q is a constant to be determined. With this expression for e ( r ) ,  

equation (2.1) reduces to B 2= ( 1 -  k~ r + q2 / r2 ) -1 ,  where k is a constant to 
be determined. After some manipulat ion equation (2.3) yields A 2= 
kl  (1 - k~  r + q2 /r2) ,  where kl is a constant to be determined. Since the space 
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is asymptotically flat at infinity, we choose A2~ 1 as r-~ ~ .  This requires 
ka = I. For large r, we thus have A 2 -  1 - k / r +  O(r-2). This must match 
onto the weak field solution, which has A 2 = 1 -2m/r. This requires k = 2m. 
Hence, 

A~= l_2m+ q ~ 
r r 2 

B 2 = A -2 (2.9) 

in the region exterior to the charge and mass distributions. We may now 
proceed to solve gl(r) and n(r), Substituting equation (2.5) into (2.2) we 
obtain 

q(nr2)r=l(r4flr~ 
2 \AB/r  

A first integral is 

~ r  = ~(2qnr 2- ~7o) (2.10) 

where r/o is a constant to be determined, and we have chosen AB = +1. 
Using equations (2.10) and (2.5) to eliminate p and fL in equation (2.6), 
we obtain 

IFA 2 " ] r + n ( l + 2 q 2 '  ~ q 7 j  = 7  70 (2.11) 

or, substituting for A and B, 

3q2r2 n-  n'(2r-3m+q---~)-�89 2) q 
= ~ o  (2.12) 

The particular solution may be found by power series. This method 
also yields one linearly independent solution of  the homogeneous equation. 
To find the second linearly independent solution of the homogeneous 
equation, one may write it as the product of the first solution with an (as 
yet) undetermined function f and then use equation (2.12) to obtain a 
first-order differential equation for f, which may be solved by the method 
of partial fractions. Further details may be found in the Appendix of Briggs 
et al. (1981). 

We give here the general solution for ]q] ~ m, which has essentially the 
same structure as the solution that arises when the isotropic form of the 
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metric is used. For [q[ ~ m the general solution of equation (2.12) is 

n(r)_ *?oq + ( m2 m3\ [ m2 2m 2 
-3mr 3 rh 1-3r 4~'2r 5 r 3 (1+2~'2)~'-2 

b(  m z m 3\ r -m( l+b)]  
- -  1-3;2--;-s ~ (2.13) 

where s r=- iql/m a n d  b--- (1 _ ~.2),/2. N o t e  that for Iq[ > m, 

r - m(1 + b) 2[bl(r/m - 1) 
b- '  In r -  m(1 - b) - Ib l - '  tan- '  [b]2 - (r/m - 1) 2 

since the argument of the logarithm is of the form z/~ and thus the modulus 
of the argument is unity. Integration of equation (2.10) using (2.12) yields 
fL For Iql ~ m 

3 - ~ ( ~ m )  _~_!(  m2 m3\ 
f~(r)=f~o+ 1-~" ~r " 1-'~2--5-+sraT-3} r z r /  

_2qr12[~2m 3 r 2m 2ff-2 (1 + 1 ~ . 2 ) 3  r 

1 (2_~_ m 3 m4 1) ~ _  ~-~ ~ ~-~j (2.14) 2mb 2 ff2--~- + ~'4--~ - -  In r -m( l+b)]  

3. B O U N D A R Y  C O N D I T I O N S  

The case of a massive, charged, slowly rotating shell of radius r0 is 
considered. The shell rotates rigidly about the z axis with angular velocity 
~o. Let the mass and charge distributions be specified by 

Pm = g~(r  -- ro), Pe = ~r6(r- ro) 
where 1 =~ 8(r-to)d3r. Since e must be regular at the origin, equation 
(2.7) requires e = 0 for r < to. Integration of equation (2.7) across the shell 
yields 

q= f ~ 1 7 6  ^w2  ^w3 

This identifies q as the total charge. 
The left-hand side of equation (2.4) contains terms proportional to 

O(r-ro) (eZ/8vr term) and 8(r-ro) (t 33 term), where 0 is the Heaviside 
function and ~ is the Dirac delta function. One therefore concludes that A 
is continuous at r = ro. Since t H is zero both inside and outside the shell, 
equation (2.3) implies that t 1~ = 0 everywhere. Regularity of A and B at the 
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origin requires  A and B to be  constant  in the interior, r < to. Equat ion  (2.3) 
yields B = 1 for  r < to. Thus  

2 m + q  2 
B = I ,  A2=  A~ 1 ro ro 2 for r < r o  (3.1) 

In tegra t ion  of  equat ion (2.1) across r = ro yields 

K = m - q2/2ro 

Mult iplying both  sides of  equat ion (2.1) by B and integrat ing across r = to, 
we obtain  

I + 8~rr~K B 6 ( r -  ro) dr = - 2 r o ( A o -  1) 

Note ,  however ,  that,  in general ,  the integral o f  the p roduc t  o f  a d iscont inuous  
funct ion and  a 6-funct ion at the discontinui ty is not defined. 4 Let t 22 = t 3 3  = 

S 6 ( r - t o ) ;  if  we in teg ra te  (2.4) across r = t o  and  use the above results, we 
obtain  

Thus ,  

and 

K - - ~ m - - - -  

q2 

2ro'  

t 11=0 ,  t 2 2 = t 3 3 = S ~ ( r - r o )  (3.2) 

Solving equat ions (2.2), (2.5), and (2.6), we find 

~'~ = ~'~0 + ~-~1/r 3 

n = n o + n l / r  3 

p = - ( r 2 n ) r / 2 r  for  r < r o  

Since n and  1~ are regular  at the origin, ~ = 1~o, n = no, and p = - n o .  Outside 
the shell, f l  is required to vanish at infinity, since ~ is measured  relative 
to observers  in inertial f rames  of  the asymptot ica l ly  flat space- t ime at infinity. 
Further,  the magnet ic  fields, since they are physical ,  must  vanish at infinity. 
These  condi t ions de termine  ~/2 in terms of  ~1, We find that  

n ( r ) =  r/o_____qq + 
3mr3 ~hR(r)  (3.3) 

4The value of ~_~ 06 dr is undetermined without further information, but lies between 0 and 
1; see, for example, the paper by Cohen and Cohen (1971). 
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where 

and  

Also 

where  

and  
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2 2 m m 2 2 2 2 m3 R(r)=-3m-3(1-~ )- [ r + 7 - ~  (1 +2~" ) 7  

1 [ 2 m2 4m3\ r-m(l+b)] 
+ ~ 1 - 3 ~  7 + 2 ~  7 )  lnr_m(l_---~j 

1 R(r) O(r 4) 
= r--5+ as r-+Oo 

(3.4) 

Q(r)=_3m_3(l_~2)_2[} m 2( ~'2) m2 1 2 m 3 
r 2 3 1-t- T 7 - k ~  (1"q-2~ "2) r 4 

1 (2m_2ff2m?+\ r r, 4 m4 ) r - m ( l + b ) q  
2mb ff r - - g - 1  lnT-~--m--~---~J 

1 Q(r)=-4r----~+O(r-5 ) as r-+oo 

Observe  that  these solut ions have the same structure as those quoted in 
Briggs et al. (1981). 

I f  we assume that  p is (at worst)  d iscont inuous  at r = ro, then equat ions  
(2.2), (2.5), and (2.6) imply  that  f~ and n are cont inuous  across the shell: 

and  

~7o___3_q + nO=3mrg rhRo (3.6) 

where  the subscr ipt  indicates that  the funct ions are to be evaluated at r = ro. 
In tegra t ing equat ion  (2.2) across r = ro gives 

4 A o -  1 
arF + - = - - ( . ,  - ao)(  + s )  

ro 
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Integrating equation (2.6) across r = ro [using equation (2.5)] gives 

r2n)r = -2q(w - ~ o )  

Expanding the above equations, we obtain 

rlo{2~rn_ ) 
r4 \  3ro 1 +2q~71Q'o=4(AoKro)-l(o~-llo)(K+S)(Ao-1) 

o r  

1197 

with 

T 03 = (E/A)(w - f~)( pm+ t 33) + (1/4~)ep sin 0 

5For a derivation of Eq. (3.11) see Cohen (1968). 

rlo{2~mr4\ 3ro ) 2q -1 + r--~orhRo=4(AoKro)-l(oJ-f~o)(K + S)(Ao-1) (3.7) 

[since Q ' ( r )=  r-2R(r)], and 

~7~176 = -2q(w -f~o) (3.8) 3rnr~ 

where R~ is the derivative of R with respect to r, evaluated at r0. We find 

rh = )tqrlo/ 6m (3.9) 

where (after some manipulation) 

)t = 2ro3[(ro- ~'2m)+ Ao(2ro- 3rn~r2) ] 

x {Ro[(r0- rnff2)(3A02 - 1) - 2r0Ao] 

+ roR~Ao[(~ro- rn~2)Ao+�89 m~'2)]} -1 (3.10) 

and equations (3.7) and (3.8) have been used with (3.1) and (3.2). Before 
obtaining an expression for the g-factor of the shell, we must first establish 
a connection between the total angular momentum of the shell J and known 
constants. (This will also be used in the following section to obtain an 
explicit representation for J.) The angular momentum is given by 5 

J=I ET~176176162176 (3 .11)  
t constant 
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Substituting for E, e, and p [using equations (2.8) and (2.5) for the latter 
two], we find 

f; [Io J = 21r sin 3 0 dO (Br4/A)(w - I-I)(K + S) ~(r - ro) dr 

- (q /8rr)  fr~(r2n)rdr ] 

= �89 - ~o)(K + S)(1 - ao) + qr2no] 

Eliminating the terms in no and (w- f~) ,  using equations (3.6) and (3.7), 
respectively, we find 

J = ~7o/6 (3.12) 

Hence, by equations (3.3) and (3.9), 

n = ~ ( 2 + A )  as r ~  (3.13) 
m r  

The magnetic dipole moment /x  is given by 

n - 2 1 x / r  3 as r ~  (3.14) 

T h e  g-factor is defined by (Panofsky and Phillips, 1962) 

g=--2tx(qJ/m) -~ (3.15) 

Hence we find 

g = 2 + A  (3.16) 

4. ANGULAR M O M E N T U M  AND MAGNETIC MO MEN T 

In the previous section we obtained a general expression for the g-factor 
for the case of a massive, charged, slowly rotating shell. The g-factor, 
however, is not an observable quantity; it depends on the ratio of two 
physical observables: angular momentum and magnetic moment. In order 
to complete our discussion of  the shell, expressions for the angular momen- 
tum J and the magnetic moment /x should be found. In this section we 
obtain such expressions. 

We first proceed to eliminate fl0 from equations (3.7) and (3.8) [using 
equation (3.5)]. After some simplification, equations (3.7) and (3.8) may 
be written 

rloroCl + qrh C2 = 4O9(K + S)r3o (4.1) 
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and 

(~oq/6ro) (?3 - r/l C4 = 2qoor~ (4.2) 

where the constants C1, C2, C3, and C4 are defined as follows: 

4 2 
ao  l + A o ) ( 1 - ~ "  x ) + ~ r o ( 1 - ~ 2 x ) ( K + S )  C1 " T (  

C2 ~- 8(r3Qo)(K + S) - Ao(1 + Ao)(r3Ro) 
(4.3) 

C3 =- Ao (Ao + 2) + 4(1 - ~'2x) 
X 

C4- -  4 t 3 3 2 4 2 = Ao{Ao[(roRo) + 2(roRo)] - 2(roRo)} - 16~" (roQo)x 

and x=-m/2ro. Equations (4.1) and (4.2) can be solved simultaneously to 
determine ~/o and rh: 

+ S) C4to I + 2~2x2C 2 
rlo=2mwr~(KxC l 2 3 2 (4.4) C4+~x ~ C2C3 

and 

2 (K q-S)C3ro I -3C1 
~71 = 2wqro2~2C2 C3X2 @ 3 C 1 C 4 (4.5) 

Given equation (4.4), equation (3.12) yields an explicit expression for J. 
From equations (3.9), (3.13), and (3.14) we find 

tx = �89189 m + ~71) (4.6) 

Substituting for r/o and 7/1 [using equations (4.4) and (4.5)] into equation 
(4.6), one obtains an explicit expression for/~. 

For given values of ~ = ]q[/m, graphical plots of/~ and J as functions 
of ro/m (Figures 1-9) illustrate that /x and J are always positive (with 
respect to the sense of ~o) for ~'< 1, but may be either positive or negative 
for ff > 1. This will be further discussed in Section 6. 

5. ASYMPTOTIC SOLUTIONS FOR ]ql>>m AND Iq]<< m 

The expressions derived in the previous sections for /z, J, and g are, 
in general, complicated functions of q, m, to, and co. These expressions do 
simplify, however, in several limiting cases. In this section we compute the 
asymptotic formulas for /z ,  J, and g in these limits. Use will be made of 
these results in the next section. 
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5.1. Iq[ >> m ,  i.e., ~ >> 1 

In addition, a further requirement--either (i) ]ql << r0 or (ii) to<< m--is  
needed in order that the expressions simplify. [The former case, with K -> 0, 
is non-general relativistic and is the subject of a recent paper (Cohen and 
Mustafa, 1986).] 

(i) [q[/ro<<l, m/ro<<l  (with ~:>-0). For this case, equation (3.3) 
approaches 

n ( r ) - rl___~o q +  "O , 
- 3 r  3 m - ~ '  r > r ~  (5.1) 

while equation (3.4) becomes 

fZ(r)= r/~ ) 0"01 3r 3 \ 2r 4 , r >  ro (5.2) 

The boundary conditions at the shell, r = ro [equations (3.5)-(3.8)], become 

_ n_&o qrll (5.3) 
f / o -  3r3 (1 - ~'2x) 2ro 4 

~/o q 771 
=-  V (5.4) no 3r3o m r~ 

r/o,4_ 2 , ~  2qr/1 4 (t~ + S) (5.5) 
I,~ X - l )  r5 ~ r~ 

rl--5 (r/o~q § 3 r / i t -  2q(to - D.o) (5.6) 
ok m / 

where (Ao-  1)/AoK ~ - 1 / r o  has been used in equation (5.5). Using equation 
(5.3) to eliminate f~o from equations (5.5) and (5.6), we find 

7/o(~2x - 1) + (2q/ro)T]l ~ -4tor3(2x - 3x2~ "2) (5.7) 

and 

7 o ( q / m )  + 3*h ~ 2q wr2 (5.8) 

where use has been made of (K + S ) / r o - -  2x  - 3x2~ "2, and higher order terms 
in m / r o  and q / ro  have been neglected. Equations (5.7) and (5.8) may be 
solved simultaneously to determine */o and rh: 

7/o = 2mwr2(2 - ~xff 2) (5.9) 

and 

1 2 /10~2  
rh = ~wqro(T~ x - 2) (5.10) 
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Equations (3.12) and (5.9) yield 

J = ~mwr2(2 - ~x~ 2) (5.11 ) 

while equations (4.6), (5.9), and (5.10) yield 
1 2 tx = ~qwro (5.12) 

The g-factor is found from (3.15) [using equations (5.11) and (5.12)] to be 

g = 6 / ( 6 -  5s (5.13) 

where ~'= Iql/m and x = m/(2ro). This result is in agreement with Cohen 
and Mustafa (1986) and the corresponding asymptotic result of Briggs et 
al. (1981). 

(ii) ro/m<< 1, ro/[ql<< i (the point particle limit). For this case we use 
the formulas of Section 4 to obtain the asymptotic expressions for J, Ix, and 
hence g. In this limit equations (4.3) become 

c l_. IqA(_~lq__J 2 ~ + 3 ) + O ( r o  o) 
- 6 ro \ ro - 

C2=(l+3"n'+4~(-M-l+-~)+O(ro)+O(~ -3) 
4~" ~" ] \  2ro 

4~ ~ / \ ro 

where use has been made of 

Ro : (1 +3"rr+ 4"~/1 

3"rr 4 \ [  1 1 \ 
Oo = 1 + - - + - ; 7 / / - s ' - - ~ + ~ / + O ( r o l ) + O ( ~  -3) 

4~" ~" / \  4ro 2mro~ / 

a o - -  Iqt--1 + O(ro) 
ro 

3m Iql l(q]2+O(ro) 
(K+S)r~  4ro 4ro 2\ro]  

Equations (4.4), (4.5) with (5.14) yield 

7o = -6mwr~[(  + O(ff-2)] + O(r 3) (5.15) 
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and 

rh = 2toqr~[ ( --~-~+ O( ~-l ) l + O( r3o) (5.16) 

From equations (3.12) and (5.15) we find (for ff >> 1) 

J = -moor~ + O(r3o) (5.17) 

while equations (4.6), (5.15), and (5.16) give (for ~" >> 1) 

Ix = -(  37r / 4 )coqr2 + O( r 3) (5.18) 

We observe from equations (5.17) and (5.18) that Ix ~ 0 and J-~ 0 as ro ~ 0. 
The g-factor is found from equation (3.15) [using equations (5.17) and 
(5.18)]. It should be noted, however, that (for ~" >> 1) 

lim g = 37r/2ff (5.19) 
r0~0 

a small ,  but nonzero ,  limit. 

5.2. Iql<< m,  i.e., 4<< 1 

For this case, equation (3.3) reduces to 

3 -3 ~m m2 l l n ( 1  2 7 ) ] ,  r >  (5.20) R(r)=-zm L r + 7 + ~  - - -  r0 

Note that qR(r) and qQ(r) are O(~'). In writing down the boundary 
conditions at the shell, r = ro, we shall neglect quadratic and higher order 
terms in ff in order to obtain equations linear in ~'. Thus, equations (3.5)-(3.8) 
become 

r/o 
a O - 3 r  3 (5.21) 

(5.22) 
m\ro 2 ] 

Ao- 1 
770 = -4r3(w -12o)(K + S) ~ (5.23) 

1A~~ ro 2 . . . .  ]-2Aorono=2q(w-f~o) (5.24) 

where r/l has been eliminated in favor of A using (3.9). Note [from (3.2)] that 

K = m + O(~ "a) 

and 

S = (m/4Ao)(1 -Ao)+ O(ff 2) (5.25) 
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Eliminating I]o from equations (5.21) and (5.23) and substituting for K and 
S from (5.25), we find 

1 A_____9_o '7o = 3 mwr~ V (1 + 3Ao) (5.26) 
m 2Ao + 1 

Equations (5.22) and (5.24) may be solved simultaneously to determine A, 
using (5.23) to eliminate the term in (~o -[10). After some manipulation one 
finds 

4(1 + 2Ao) 
A = (5.27) 

rg(1 + 3Ao)(2RoAo- 2Ro+ roR'oAo) 

Alternatively, one could obtain equation (5.27) directly from the general 
expression for A [equation (3.10)] in the limit ~'<< 1. 

As stated in Section 3, the g-factor is given by g = 2 + A .  Equations 
(3.12) and (5.26) yield 

j=~mwrZo~( 1 1 - A o  (5.28) 
+ 3Ao) 2Ao + 1 

Equations (3.15) and (3.16) yield the following expression for the magnetic 
moment: 

2 
tx=�89 r3o(2RoAo_~Ro+roR~Ao)] (5.29) 

5.3. A 0 ~  1: The Weak-Fie ld  Limit 

If m/ro-->O and q/ro-~O with ~ arbitrary but fixed, then A0~ 1 and 
space outside (as well as inside) the shell is fiat. For this case one would 
expect to recover the non-general relativistic expressions for the angular 
momentum, magnetic moment, and g-factor of the shell. In this section we 
verify that this is so. We proceed (as before) by using the formulas of 
Section 4 to obtain expressions for tz, J, and g in this limit. From equations 
(4.3) we find 

C 1 ~ 1 -~ O ( x )  

C2 ~ - 2 +  O(x) 

C3 ~ 3/x + O(x ~ 
(5.30) 

C4 ~ - 3  + O(x )  
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where we have used (K + S)/ro ~ 2x + O(x 2) and the C~ have been calculated 
only to lowest order in x. Equations (4.4) and (4.5) yield 

rio = 4m~or~ + O( x ) (5.31) 

nl = - ~o, qr~+ O ( x )  (5.32) 

From equations (3.12) and (5.31) we obtain 

lim J = ~moJr2o (5.33) 
AO~ 1 

while (4.6), (5.31), and (5.32) give 

lim /x = �89 (5.34) 
Ao~ 1 

From (3.15), (5.33), and (5.34) we find 

lim g = 1 (5.35) 
AO--> I 

Using Newtonian mechanics, one finds by a simple calculation that 
the moment of inertia of a rigid spherical shell of mass m and radius ro 
about its axis of rotation is 2rnr~/3 and hence the orbital angular momentum 
of the shell about its axis of rotation is 2moJr2o/3. The angular momentum 
of the electromagnetic field and the angular momentum due to the stress 
supporting the shell are, by comparision, O(q2/mro) smaller than the orbital 
angular momentum, and are therefore negligible (since q/ro~O in this 
limit). Thus, the total angular momentum of the shell about its axis of 
rotation is 2moire~3, which is in agreement with (5.33), as one would expect. 
Similarly, using classical electromagnetism in flat space, one finds that the 
magnitude of the magnetic moment of such a shell is qo~r~/3, which is in 
agreement with (5.34), again as one would expect. Given these results for 
tz and J, it follows that g = 1, in agreement with (5.35). 

5.4. [ < 1 and Ao ~ 0: The Horizon Radius 

Equation (3.1) can be expressed in the form 

A~ = 1 - 4x + 4~'2x 2 (5.36) 

with x = m/2ro and r = Iql/m. For r  1 the rhs of equation (5.36) vanishes 
when 

1 - r = 1/(4x) (5.37) 

There are two positive values of x, both of which are roots of equation 
(5.37); it will be shown in Section 6 that only the larger root is physically 
permissible. For a fixed mass the shell radius approaches a minimum 
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(horizon) value as Ao approaches zero. We once again use the results of 
Section 4 to obtain expressions for/z, J, and g as Ao~ 0. For Ao<< 1, equations 
(4.3) reduce to 

c ,  -4 (1  - ~2x)(,, + S)ro '  

C2 ~ 8(ro3 Qo)(K + S) 

C3 -- 4(1 - ~'2x) (5.38) 

Ca ~ K -16ff2x2(raQo) 

where K =- A~r4R'o. Note that  K approaches a finite, but nonzero value as 
Ao~ 0, while Qo ~ oo and (K + S)ro 1 ~ oo as Ao~ 0. It follows from equations 
(4.4) and (4.5) that 

lim 7o = 6mwr2o (5.39) 
Ao~0 

and 

lim ~71 = 0 (5.40) 
Ao~0 

where equation (5.37) has been used in (5.39). It follows from equations 
(3.12) and (5.39) that 

lim J = mwr 2 (5.41) 
Ao~0 

and from equations (4.6), (5.39), and (5.40) that 

lim ~ = qwr~ (5.42) 
A0~0 

Equations (3.15), (5.41), and (5.42) then give 

lim g = 2 (5.43) 
Ao~O 

6. R E M A R K S  

6.1. Restrictions on m / r  o 

Given a value of ~ greater than unity, the minimum value of  A 2 is 
always positive. However, for ~<  1 the requirement that A 2 be positive 
implies that either 

m / r > ~ - 2 ( l + b )  Vr>-ro 

o r  

m / r < ~ - 2 ( 1 - b )  V r ~ r o  
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The first possibility must be rejected, since it cannot hold for arbitrarily 
large r. Hence, 

m/r<~-2(1-b) Vr>-ro (6.1) 

In particular, 

rn/ro<~-2(1-b), ~'<1 (6.2) 

Note that the horizon radius ru = rn~2/(1-b) follows from (6.1). In this 
paper we have not applied any further restrictions on m/ro, given ~, other 
than that stated above. In particular, it is of interest to look at solutions 
for/z,  J, and g as functions of ff and ro/m, without restrictions on the sign 
of •, which is not observable. (It may be noted that K is positive for 
m/ro<2~-2.) 

6.2. General Comments on g, p., and J 

From the graphs of tx and J it can be seen that  these observables may 
be either positive or negative (with respect to the sense of ~o) for ~> 1. In 
particular, for certain values of ~ and ro/m (e.g., Fig. 6b: ~ = 1.1, ro/m ~- 0.7) 
the shell may rotate and yet have no net angular momentum (J = 0). This 
situation arises when the (negative) angular momentum associated with the 
stress supporting the shell exactly cancels the (positive) angular momentum 
of the rigid-body rotation and the electromagnetic field. In such circum- 
stances the g-factor diverges to infinity, since/z does not in general vanish 
at the same point as J. 

It is of interest to note that for a given ~ (> 1) there are some values 
of g for which there are two possible values of ro/m (e.g., Fig. 6a: ~ = 1.1 
and 1 -< g-< 2). In these cases one configuration has/z and J both positive, 
and the other has/x and J both negative. However, since co and r0 may not 
be directly measurable (e.g., for a microscopic system), one cannot in general 
distinguish between the two configurations by measurements of/~ and J. 

6.3. Comments on Asymptotic Results 

In Section 5 expressions for/.~, J, and g were found in four limiting 
cases. Here we compare results for these cases. 

For the two cases ff>>l, Iql/ro<< 1, and m/ro<< 1 [Section 5.1(i)] and 
if<< 1 (Section 5.2) one observes that in the weak-field limit (x-->0 and 
Ao~ 1) the expressions for the angular momentum (5.11) and (5.28) and 
those for the magnetic moment (5.12) and (5.29) reduce to the non-general 
relativistic limit values of these quantities for arbitrary if, as calculated in 
Section 5.3. Our results are thus consistent in the Newtonian limit. 

For the point particle limit, ro/m-O, and ~'>> 1 [Section 5.1(ii)] we 
have already noted from equations (5.17) and (5.18) that both /x and J 
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vanish as r0 approaches zero. Thus, such a particle has no external magnetic 
field, magnetic moment, or angular momentum (both ~71 and 7o vanish as 
r0--> 0). Its electric field is, however, still given by equation (2.8). 

For ~'< 1, the shell has an event horizon. As the shell approaches its 
event horizon, r o -  rn (Section 5.4), the ratio of the general relativistic to 
the nonrelativistic expression for J increases by 50% over its value in the 
weak-field limit, while the corresponding ratio for /z increases by 200% 
over its value in the weak-field limit. These results follow from a comparison 
of equation (5.41) with (5.33) and equation (5.42) with (5.34). 

6.4. g-Factor for Some Elementary Particles 

Charged elementary particles found in nature have ff >> 1. It is of interest 
to see what radii are predicted for the electron, proton, and muon by the 
asymptotic solution for ~" >> 1, given the measured g-factors of these particles. 
[Results for the electron and proton were included in Briggs et al. (1981).] 

For the electron (ff = 2.042• 1021 in dimensionless units) a value of 
g = 2.00232 yields a shell radius of 2.346 x 10 -~3 cm. 

For the proton (ff=l . l12•  a value of g=5.586 yields a shell 
radius of 7.789 • 10 -17 cm. 

For the muon ( f f=9.874•  Is) a value of  g=2.00234 yields a shell 
radius of  1.134x 10 -15 cm. 

7. CONCLUSION 

For a slowly rotating massive shell of charge-to-mass ratio ~" less than 
unity, the g-factor has a value in the range g = 1 (the weak-field limit) to 
g = 2 (r0 approaches rH), in agreement with previous results (Briggs et al., 
1981; Cohen et al., 1973). From the asymptotic expressions for /z and J 
and from graphical plots of /x  and J, we find that the ratios of the general 
relativistic expressions to the nonrelativistic expressions for these quantities 
are maximized as the shell approaches its event horizon, i.e., A0--> 0. 

For a charge-to-mass ratio greater than unity there is no event horizon 
and also no upper or lower bound on the value g may take. This arises 
because the net angular momentum of the shell may vanish for ~'> 1, but 
not for ff < 1. For ~" >> 1 (as it is for charged elementary particles) and positive 
mass density (i.e., K >-0), the g-factor lies in the range 1 <-g-<6. 
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